
To Make Hearts Bleed

Daniel Molkentin
daniel@molkentin.de

A (Native) Developer's Account On SSL

Fairy-Tale-Gone-Bad
 edition

 2

About me

● Daniel Molkentin
● Senior Software Engineer for ownCloud Inc

– The opinions expressed in this talk are mine
● Working on the desktop client

– Quite some SSL
● In another/related life: Contributor/Reviewer to the Qt

networking stack (Particularly: Qt SSL)
– Even more SSL

● Guy with a mission, not a “security expert”!

 3

What we need to talk about

● Why the current way developers and sysadmins
go about security is suboptimal

● What you can do about it
● What the security community is doing about it
● What nobody is doing (and why)
● How to stop this

 4

Why we need to talk

Most peoples' HTTPS web
sites, in different browsers

 5

Scope of this Talk

● Targeted at both software developers and sysadmins
● Not a lecture on computer security
● Tries to explain the details necessary to follow along
● Not a comprehensive overview of all that's wrong
● May destroy all illusions you might have had on SSL (if any)

Please ask questions as they come up, but try to defer
discussions until Q&A.

 6

SSL/TLS in a Nutshell
● Introduced 1994 as SSL 2.0 by Netscape (proprietary, unreviewed, broken

design, “export mode”) to encrypt connections, “authenticate” domains
– Uses X.509 (directory oriented, no extensions)
– X.509 uses ASN.1 (“Unfortunately Complicated”)

● SSL 3.0: complete rewrite, better, still proprietary (1995)
● TLS 1.0: IETF-controlled, 3DES mandatory, wider range of cipher suites,

uses finalized X.509 (1999)
● Fields: Subject, Issuer, Public Key, Extensions (e.g. SAN)
● Signed by CA (or intermediate), trusted by browsers → avoids MITM attacks
● Simple! (In theory....)

ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-
SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-
SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-
AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128:AES256:AES:DES-CBC3-SHA:HIGH:!aNULL:!eNULL:!
EXPORT:!DES:!RC4:!MD5:!PSK

 7

Immediate Issues
● Any CA can sign for any domain

– State Orgs from questionable countries
– Walt Disney! (CN=The Walt Disney Company CA, Fingerprint: 885da88c44)

– Pending: “Honest Achmed's Used Cars and Certificates”
● Ooops, the key has leaked

– Remedies: CRL (several MB already), OCSP, CT, …
– Browsers don't check
– Blacklist, not a whitelist
– Much has been tried, nothing works today

● SSL “Virtual Hosts” still not well understood
● Self-signed certificates (Testing, “Only for me anyway”, <Enter lame excuse>)

– Use EasyRSA: https://github.com/OpenVPN/easy-rsa
● Poor Server Configuration (Enables SSLv2, weak ciphers, NULL ciphers)
● Bad practices (Mixed content, partial use of SSL, Session Cookies leak via HTTP)
● Not following Best Practices (HTTP downgrade possible!, Intermediate Certificate missing)

https://github.com/OpenVPN/easy-rsa

 8

X.509
● ITU Standard, meant to be used with X.500 (today: LDAP)
● Uses ASN.1

– Encodings: BER, CER, DER, XER...
– Can contain arbitrary fields
– Fields can contain arbitrary data (e.g. photos, mp3s,...)
– Extremely easy to get wrong → Security implications

● Common Name / Subject Alternative Name fields
– Can contain an IP(s), or hostname(s)
– daniel.molkentin.net, *.molkentin.net
– 88.198.13.78
– *.198.13.78 (this used to work!)
– Should *.foo.bar match baz.fooish.foo.bar?
– IDN problems all over again ('ü' !=== 'ü')

 9

SSL Sucks! Kill it with Fire!

 10

Fixing the Problem? DANE
$ dig +dnssec +noall +answer +multi _443._tcp.www.bund.de TLSA
 _443._tcp.www.bund.de. 900 IN TLSA 3 0 1 (
8F28B062EAA9F917042A63D35D99E017C68D89EAA314
C49A3EF94B6E770B0A49)
_443._tcp.www.bund.de. 900 IN RRSIG TLSA 7 5 900 (
20140919120001 20140909120001 35264 bund.de.
XBWrIEhXtWX6tJbmhqrVXrtZGiNNyhwdHwRsiuvWxZ7V
jEyVpRNfBhgZK0mG4hC2xyLNT4n2+fW6N42Pb/FwTQXC
9cvYIBb61xiJxl2V2DICf4PGCPUM03hEC8XyZdGVGhPb
CXiA/mi5NIqLnc03YsSaXL7DR87iGUfQPt4Za3M=)

3: Domain Issued Certificate, 0: Full Certificate, 1: SHA256 hash

● Based on DNSSEC: Add certificate hash to (signed) DNS zone
● Tricky (certificate replacement!)
● Few DNS providers / DNS setups have DNSSEC-signed zones
● What about Intranets?
● No browser support (plugin required)
● No convenient API/Framework support

 11

What to do in the Meanwhile?
● In the meanwhile: Get a valid certificate (really!). → StartSSL, GlobalSign (for OSS)
● Send ALL the certificates !1!! (incl. intermediates)
● Use good cipher suites: https://wiki.mozilla.org/Security/Server_Side_TLS
● Fix downgrade, HTTP-connect attacks

– HTTP Strict transport Security header
– “StrictTransportSecurity: maxage=31536000; includeSubDomains”

● Certificate Pinning
– Only possible for Browser-Vendor (Chrome!) or developers (at the moment)
– Make sure to pin sensible attributes
– Static list of a handful of selected sites
– Flawed: “The 80's called, they want their hosts.txt back!”

● Test your configuration: http://ssllabs.com, cipherscan, sslyze

https://wiki.mozilla.org/Security/Server_Side_TLS
http://ssllabs.com/

 12

Your Reward

slllabs.com, showing results for daniel.molkentin.net

 13

What Sysadmins cannot fix
● Security vs. Decree of Availability
● OCSP (Online Certification Status Protocol)

– Leaks browsing history to CA
– States: “Good”, “Revoked”, “Unknown”
– Server may not respond
– Replay attack possible
– Enter: OCSP Stapling (Hello Kerberos Tickets!)

● Nginx implementation unreliable
● Only the leaf cert may be stapled (WiP)
● OCSPMustStaple not a standard
● Not available in Apache 2.2, nginx < 1.3.7
● Needs explicit configuration in later version

– IIS had this in Windows Server 2008, enabled by default (!)
– Which brings us right to...

 14

BSDs and Linux “Stable”/”LTS”/
”Enterprise” Distributions

● Most ship OpenSSL from the medieval ages (0.9.8)
● Only sometimes, the vendor actually relinks

against later versions (RHEL/CentOS >= 6.5)
● Only Apache 2.2 available

– No OCSP stapling (see last slide)
– 1024 DH only
– Session Caching, Session Tickets a mess

 15

Call To Action

● Sysadmins
– Fix your security up to Best Practices
– Track & Implement improvements to certificate security

(OCSP stapling, etc)
– Don't stick with old distros / Use backports!

● Distributions
– Promote the use of up-to-date security
– Upgrade Components & re-certify if necessary

 16

All good now?

● We only have discussed HTTP servers and browsers
● We did not discuss other servers (mail, ldap, etc)

– Same principles apply!
● Time to talk about

– Desktop Applications
– Apps
– Your treasured bash scripts (wget, curl!)

 17

Leaving the Browser's Nest

● Modern SSL APIs are designed to write browsers
● They do not offer the comfort of a browser

– You've got to roll your own...
● Self-signed-cert handling code
● Warning dialogs
● Mixed mode handling

– Auto-Updates
● Are you using transport security?
● Are you checking signatures?

– Cross-Platform without a Toolkit? Outch!
– Sometimes caught in OSS
– Closed Source? Who knows...

 18

So you're writing an app for that?

● Chances are that you're doing it wrong
● Pfahl & al, Hannover University

– Analyzed most popular 13,500 Google play store apps for Android
– Captured CC#, Twitter, Google, Yahoo, IBM Sametime Accounts
– Forged Antivirus signature updates (!)

● Common Problems
– Trusting all Certs
– Allowing all host names with a valid Cert
– Trusting all CAs even in ancient Android versions (DigiNotar!)
– Allows Mixed Mode content

 19

But I'm writing for iOS!

● “Apple reviews apps, broken SSL implementations
will be caught in review, right?”

● “I'm so, so sorry” (Pfahl & al strike again, 2013)
– 1009 cherry-picked apps from the App Store
– 98 were vulnerable
– 254 gave false error message when attacked
– 287 did simply not connect

● Curated App Store is not a guarantee

 20

Causes

● Only basic SSL APIs available
● Improper understanding of underlying technology
● “Programming by stackoverflow”
● Popular Mobile Development Frameworks disable

certificate checks by default
● Certificate checks implemented, disabled for

development, never re-armed

 21

Remedies

● API / Framework developers need to offer
complete solutions, not a basic API

● In the meanwhile: Developers should treat SSL like
it was your business domain
– If you don't understand it, learn about it
– There is good documentation out there
– Read it!

● Pen test your application

 22

(Bash) Scripts

● Your Server uses self-signed certs
● You need to retrieve SSL data from a script
● Easy: curl k!

– Oops, you just opened up widely for MITMs
● Remedy:

– Create a custom CA, roll out your CA
● There are a number of good CA software kits
● There is CACert

– Get a paid-for certificate
– For large server farms: Puppet, Chef, CFEngine exist

 23

The Summary

But:

Never surrender,
Never give up,
Or THEY will win.

Daniel Molkentin <daniel@molkentin.de>

Thanks to Richard Moore of Westpoint Security for reviewing these slides

 24

References
● SSL – Paved with good Intentions:

http://www.westpoint.ltd.uk/papers/ssl-paved-with-good-intentions.pdf

● 20 Years of SSL/TLS Research:
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/MeyerChristopher/diss.pdf

● The Case of OCSP-Must-Staple:
https://www.ccsl.carleton.ca/paper-archive/sobey-esorics-08.pdf

● Bullet Proof SSL and TLS: https://www.feistyduck.com/books/bulletproof-ssl-and-tls/

● OpenSSL Cookbook: https://www.feistyduck.com/books/openssl-cookbook/

● Rethinking SSL: http://cryptome.org/2014/08/rethinking-ssl.pdf

● An Analysis of Android SSL (In)Security:
http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf

● DANE Demonstration (from ICANN 49 DNSSEC Workshop):
https://singapore49.icann.org/en/schedule/wed-dnssec/presentation-dnssec-dane-26mar14-en
.pdf

● Verisign DANE/TLSA tools: http://dane.verisignlabs.com/

http://www.westpoint.ltd.uk/papers/ssl-paved-with-good-intentions.pdf
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/MeyerChristopher/diss.pdf
https://www.ccsl.carleton.ca/paper-archive/sobey-esorics-08.pdf
https://www.feistyduck.com/books/bulletproof-ssl-and-tls/
https://www.feistyduck.com/books/openssl-cookbook/
http://cryptome.org/2014/08/rethinking-ssl.pdf
http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf
https://singapore49.icann.org/en/schedule/wed-dnssec/presentation-dnssec-dane-26mar14-en.pdf
https://singapore49.icann.org/en/schedule/wed-dnssec/presentation-dnssec-dane-26mar14-en.pdf
http://dane.verisignlabs.com/

 25

Addendum: FIPS

● Federal Information Processing Standard
● More precisely FIPS 140-2 deals with SSL
● “U.S. government computer security standard used to accredit

cryptographic modules”
● Requirement if you want to do business with the US administration
● SecureTransport/SChannel are certified
● OpenSSL: FIPS mode exists, lots of strings attached
● Certification is expensive (50k+)
● OpenSSL drew money from FIPS-related services → reason to keep

their codebase as unchanged as possible

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

