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About me

● Daniel Molkentin
● Senior Software Engineer for ownCloud Inc

– The opinions expressed in this talk are mine
● Working on the desktop client

– Quite some SSL
● In another/related life: Contributor/Reviewer to the Qt 

networking stack (Particularly: Qt SSL)
– Even more SSL

● Guy with a mission, not a “security expert”!
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What we need to talk about

● Why the current way developers and sysadmins 
go about security is suboptimal

● What you can do about it
● What the security community is doing about it
● What nobody is doing (and why)
● How to stop this



  4

Why we need to talk

Most peoples' HTTPS web 
sites, in different browsers



  5

Scope of this Talk

● Targeted at both software developers and sysadmins
● Not a lecture on computer security
● Tries to explain the details necessary to follow along
● Not a comprehensive overview of all that's wrong
● May destroy all illusions you might have had on SSL (if any)

Please ask questions as they come up, but try to defer 
discussions until Q&A.
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SSL/TLS in a Nutshell
● Introduced  1994 as SSL 2.0 by Netscape (proprietary, unreviewed, broken 

design, “export mode”) to encrypt connections, “authenticate” domains
– Uses X.509 (directory oriented, no extensions)
– X.509 uses ASN.1 (“Unfortunately Complicated”)

● SSL 3.0: complete rewrite, better, still proprietary (1995)
● TLS 1.0: IETF-controlled, 3DES mandatory, wider range of cipher suites, 

uses finalized X.509 (1999)
● Fields: Subject, Issuer, Public Key, Extensions (e.g. SAN)
● Signed by CA (or intermediate), trusted by browsers → avoids MITM attacks
● Simple! (In theory....)

ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-
SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-
SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-
AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128:AES256:AES:DES-CBC3-SHA:HIGH:!aNULL:!eNULL:!
EXPORT:!DES:!RC4:!MD5:!PSK
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Immediate Issues
● Any CA can sign for any domain

– State Orgs from questionable countries
– Walt Disney! (CN=The Walt Disney Company CA, Fingerprint: 885da88c44)

– Pending: “Honest Achmed's Used Cars and Certificates”
● Ooops, the key has leaked

– Remedies: CRL (several MB already), OCSP, CT, …
– Browsers don't check
– Blacklist, not a whitelist
– Much has been tried, nothing works today

● SSL “Virtual Hosts” still not well understood
● Self-signed certificates (Testing, “Only for me anyway”, <Enter lame excuse>)

– Use EasyRSA: https://github.com/OpenVPN/easy-rsa
● Poor Server Configuration (Enables SSLv2, weak ciphers, NULL ciphers)
● Bad practices (Mixed content, partial use of SSL, Session Cookies leak via HTTP)
● Not following Best Practices (HTTP downgrade possible!, Intermediate Certificate missing)

https://github.com/OpenVPN/easy-rsa
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X.509
● ITU Standard, meant to be used with X.500 (today: LDAP)
● Uses ASN.1

– Encodings: BER, CER, DER, XER...
– Can contain arbitrary fields
– Fields can contain arbitrary data (e.g. photos, mp3s,...) 
– Extremely easy to get wrong → Security implications

● Common Name / Subject Alternative Name fields
– Can contain an IP(s), or hostname(s)
– daniel.molkentin.net, *.molkentin.net
– 88.198.13.78
– *.198.13.78 (this used to work!)
– Should *.foo.bar match baz.fooish.foo.bar?
– IDN problems all over again ('ü' !=== 'ü')
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SSL Sucks! Kill it with Fire!
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Fixing the Problem? DANE
$  dig +dnssec +noall +answer +multi _443._tcp.www.bund.de TLSA
 _443._tcp.www.bund.de. 900 IN TLSA 3 0 1 (
8F28B062EAA9F917042A63D35D99E017C68D89EAA314
C49A3EF94B6E770B0A49 )
_443._tcp.www.bund.de. 900 IN RRSIG TLSA 7 5 900 (
20140919120001 20140909120001 35264 bund.de.
XBWrIEhXtWX6tJbmhqrVXrtZGiNNyhwdHwRsiuvWxZ7V
jEyVpRNfBhgZK0mG4hC2xyLNT4n2+fW6N42Pb/FwTQXC
9cvYIBb61xiJxl2V2DICf4PGCPUM03hEC8XyZdGVGhPb
CXiA/mi5NIqLnc03YsSaXL7DR87iGUfQPt4Za3M= )

3: Domain Issued Certificate, 0: Full Certificate, 1: SHA256 hash

● Based on DNSSEC: Add certificate hash to (signed) DNS zone
● Tricky (certificate replacement!)
● Few DNS providers / DNS setups have DNSSEC-signed zones
● What about Intranets?
● No browser support (plugin required)
● No convenient API/Framework support
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What to do in the Meanwhile?
● In the meanwhile: Get a valid certificate (really!). → StartSSL, GlobalSign (for OSS)
● Send ALL the certificates !1!! (incl. intermediates)
● Use good cipher suites: https://wiki.mozilla.org/Security/Server_Side_TLS
● Fix downgrade, HTTP-connect attacks 

– HTTP Strict transport Security header
– “StrictTransportSecurity: maxage=31536000; includeSubDomains”

● Certificate Pinning
– Only possible for Browser-Vendor (Chrome!) or developers (at the moment)
– Make sure to pin sensible attributes
– Static list of a handful of selected sites
– Flawed: “The 80's called, they want their hosts.txt back!”

● Test your configuration: http://ssllabs.com, cipherscan, sslyze

https://wiki.mozilla.org/Security/Server_Side_TLS
http://ssllabs.com/
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Your Reward

slllabs.com, showing results for daniel.molkentin.net
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What Sysadmins cannot fix
● Security vs. Decree of Availability
● OCSP (Online Certification Status Protocol)

– Leaks browsing history to CA
– States: “Good”, “Revoked”, “Unknown”
– Server may not respond
– Replay attack possible
– Enter: OCSP Stapling (Hello Kerberos Tickets!)

● Nginx implementation unreliable
● Only the leaf cert may be stapled (WiP)
● OCSPMustStaple not a standard
● Not available in Apache 2.2, nginx < 1.3.7
● Needs explicit configuration in later version

– IIS had this in Windows Server 2008, enabled by default (!)
– Which brings us right to...
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BSDs and Linux “Stable”/”LTS”/ 
”Enterprise” Distributions

● Most ship OpenSSL from the medieval ages (0.9.8)
● Only sometimes, the vendor actually relinks 

against later versions (RHEL/CentOS >= 6.5)
● Only Apache 2.2 available

– No OCSP stapling (see last slide)
– 1024 DH only
– Session Caching, Session Tickets a mess
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Call To Action

● Sysadmins
– Fix your security up to Best Practices
– Track & Implement improvements to certificate security 

(OCSP stapling, etc)
– Don't stick with old distros / Use backports!

● Distributions
– Promote the use of up-to-date security
– Upgrade Components & re-certify if necessary
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All good now?

● We only have discussed HTTP servers and browsers
● We did not discuss other servers (mail, ldap, etc)

– Same principles apply!
● Time to talk about

– Desktop Applications
– Apps
– Your treasured bash scripts (wget, curl!)
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Leaving the Browser's Nest

● Modern SSL APIs are designed to write browsers
● They do not offer the comfort of a browser

– You've got to roll your own...
● Self-signed-cert handling code
● Warning dialogs
● Mixed mode handling

– Auto-Updates
● Are you using transport security?
● Are you checking signatures?

– Cross-Platform without a Toolkit? Outch!
– Sometimes caught in OSS
– Closed Source? Who knows...
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So you're writing an app for that?

● Chances are that you're doing it wrong
● Pfahl & al, Hannover University

– Analyzed most popular 13,500 Google play store apps for Android
– Captured CC#, Twitter, Google, Yahoo, IBM Sametime Accounts
– Forged Antivirus signature updates (!) 

● Common Problems
– Trusting all Certs
– Allowing all host names with a valid Cert
– Trusting all CAs even in ancient Android versions (DigiNotar!)
– Allows Mixed Mode content
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But I'm writing for iOS!

● “Apple reviews apps, broken SSL implementations 
will be caught in review, right?”

● “I'm so, so sorry” (Pfahl & al strike again, 2013)
– 1009 cherry-picked apps from the App Store
– 98 were vulnerable
– 254 gave false error message when attacked
– 287 did simply not connect

● Curated App Store is not a guarantee



  20

Causes

● Only basic SSL APIs available
● Improper understanding of underlying technology
● “Programming by stackoverflow”
● Popular Mobile Development Frameworks disable 

certificate checks by default
● Certificate checks implemented, disabled for 

development, never re-armed
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Remedies

● API / Framework developers need to offer 
complete solutions, not a basic API

● In the meanwhile: Developers should treat SSL like 
it was your business domain
– If you don't understand it, learn about it
– There is good documentation out there
– Read it!

● Pen test your application
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(Bash) Scripts

● Your Server uses self-signed certs
● You need to retrieve SSL data from a script
● Easy: curl k!

– Oops, you just opened up widely for MITMs
● Remedy:

– Create a custom CA, roll out your CA
● There are a number of good CA software kits
● There is CACert

– Get a paid-for certificate
– For large server farms: Puppet, Chef, CFEngine exist
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The Summary

But:

Never surrender,
Never give up,
Or THEY will win.

Daniel Molkentin <daniel@molkentin.de>

Thanks to Richard Moore of Westpoint Security for reviewing these slides
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https://singapore49.icann.org/en/schedule/wed-dnssec/presentation-dnssec-dane-26mar14-en.pdf
http://dane.verisignlabs.com/
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Addendum: FIPS

● Federal Information Processing Standard
● More precisely FIPS 140-2 deals with SSL
● “U.S. government computer security standard used to accredit 

cryptographic modules”
● Requirement if you want to do business with the US administration
● SecureTransport/SChannel are certified
● OpenSSL: FIPS mode exists, lots of strings attached 
● Certification is expensive (50k+)
● OpenSSL drew money from FIPS-related services → reason to keep 

their codebase as unchanged as possible
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